WORKSHEET 8

Date: 11/01/2021 Name:

Integers and Division Algorithm

DEFINITION 1. let $a, b \in \mathbb{Z}$. We say a **divides** b if

 $b = a \cdot c$ for some integerc.

When *a* divides *b*, we write a|b. Otherwise, $a \nmid b$.

Exercise

- 1. Label each of the following true or false, and justify your answer.
 - (a) 8|0
 - (b) a|b and $b|c \Rightarrow a|c$
 - (c) a|b and $a|c \Rightarrow a|bc$
 - (d) $a|b \Rightarrow -a|b$
 - (e) $a|bc \Rightarrow b|c \text{ or } c|a$
- 2. Let *a* and *b* be non zero integers
 - (a) If a|b and b|a, then $a = \pm b$.
 - (b) If a|b, then $|a| \le |b|$.

THEOREM 1 (The Division Algorithm). *For positive integers a and b, there exist unique integers q and r such that*

$$b = aq + r \quad 0 \le r < a$$

Recall: **highest common factor**, hcf(a,b), is the largest positive integer that divides both *a* and *b*. We write this as gcd(a,b) or simply (a,b). And by we, I mean "I". Some basic examples of this definition: gcd(4,2) = gcd(7,53) =

PROPOSITION 2. Let *a* and *b* be positive integers. If b = aq + r for some integers *q* and *r*, then gcd(a,b) = gcd(r,a).

1. Define a **prime triple** to be a set of three prime numbers of the form $\{n, n+2, n+4\}$. For example, $\{3, 5, 7\}$ is a prime triple. Are there any others? Either exhibit another or prove there are none.

2. If *a* is an integer, then a^2 has a remainder of zero or one when divided by 4.