## Worksheet 8

Date: 11/01/2021
Name:

## Integers and Division Algorithm

DEFINITION 1. let $a, b \in \mathbb{Z}$. We say a divides $b$ if

$$
b=a \cdot c \text { for some integer } c .
$$

When $a$ divides $b$, we write $a \mid b$. Otherwise, $a \nmid b$.
Exercise

1. Label each of the following true or false, and justify your answer.
(a) $8 \mid 0$
(b) $a \mid b$ and $b|c \Rightarrow a| c$
(c) $a \mid b$ and $a|c \Rightarrow a| b c$
(d) $a|b \Rightarrow-a| b$
(e) $a|b c \Rightarrow b| c$ or $c \mid a$
2. Let $a$ and $b$ be non zero integers
(a) If $a \mid b$ and $b \mid a$, then $a= \pm b$.
(b) If $a \mid b$, then $|a| \leq|b|$.

THEOREM 1 (The Division Algorithm). For positive integers $a$ and $b$, there exist unique integers $q$ and $r$ such that

$$
b=a q+r \quad 0 \leq r<a
$$

Recall: highest common factor, $h c f(a, b)$, is the largest positive integer that divides both $a$ and $b$. We write this as $\operatorname{gcd}(a, b)$ or simply $(a, b)$. And by we, I mean "I".
Some basic examples of this definition: $\operatorname{gcd}(4,2)=$ $\operatorname{gcd}(7,53)=$

PROPOSITION 2. Let $a$ and $b$ be positive integers. If $b=a q+r$ for some integers $q$ and $r$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(r, a)$.

1. Define a prime triple to be a set of three prime numbers of the form $\{n, n+2, n+4\}$. For example, $\{3,5,7\}$ is a prime triple. Are there any others? Either exhibit another or prove there are none.
2. If $a$ is an integer, then $a^{2}$ has a remainder of zero or one when divided by 4 .
